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0 Graphical models
9 Belief propagation
e Quantum graphical models

e Quantum belief propagation

e Examples
@ Quantum turbo-codes

@ Many-body simulations
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Graphical models
Graphical models

@ Bayesian networks (artificial intelligence).
@ Factor graphs (image recognition).
@ Tanner graphs (coding theory).
@ Markov networks (statistical physics).
@ etc.
Common features:
@ A (sparse) graph G= (V,E).
@ Random variables u, each associated with a vertex u € V.
@ An efficiently specifiable distribution P(V) = P(uy, Uo, .. .).
@ Edges e = (u, v) encode some kind of dependency relation in P.
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Let A, B, and C be three random variables with distribution P(A, B, C).
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Graphical models
Markov random fields

Given a graph G = (V, E) and a distribution P(V), the pair (G, P(V))
forms a Markov Random Field iff:

@ ForallUc V,I(U:V —U-n(U)|n(U)) =0.
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Graphical models

Hammersley-Clifford Theorem

Theorem (Hammersley-Clifford)
The pair (G, P(V)) is a positive (P > 0) random Markov field iff

Pv) = TI w(©)

Cee(G)
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Graphical models

Hammersley-Clifford Theorem

Theorem (Hammersley-Clifford)
The pair (G, P(V)) is a positive (P > 0) random Markov field iff

Special case: bifactor states (pairwise RMF)

When largest clique size is 2 (2d square lattice) or when v(C) is trivial
for |C| > 2, MRF are of the form

P(V) = fHu IT »u:v)

veV (u,v)eE

= Zoo{ - A(Shr T}
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9 Belief propagation
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Description of the _a"lngorit'hm

Task (basic case)

Given a graph G = (V, E) and a bifactor distribution P(V) on G,
compute marginals

P(v)=>_P(V).
V—v
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Description of the algorithm

Task (basic case)
Given a graph G = (V, E) and a bifactor distribution P(V) on G,
compute marginals

P(v)=>_P(V).
V—v
Algorithm architecture

@ One processor per random variable v.
@ Messages exchanged between processors related by an edge.

@ Outgoing messages at v depend on local "fields" x(v) and
v(u : v) and received messages at v.

@ The marginal P(v) is estimated by a belief b(v) that depends on
the received messages at v and the local fields.

@ Exact when G is a tree and complexity = diameter(G).

@ Good heuristic on loopy graphs.
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Belief propagation algorithm

Algorithm

@ Initialization m,_.,(v) = cte.
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Belief propagation algorithm

Algorithm

@ Initialization m,_.,(v) = cte.
@ lterations my—.v(v) o< 3=, p(u)v(u : V) [Ty eniuy—v Mv—u(U).

ou,

Q\?(
by My —v

o Beliefs b(u) o< u(U) [T, en(u) Mv—u(U).
@ b(u,v) o< p(u)pu(V)v(u : V) [Twenw)—v Mv—u(U) Tlwen)—u Mw—v(V).
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Quantum graphical models
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Quantum graphical models
System description

@ A (sparse) graph G= (V,E).

@ Each vertex u is associated a quantum system (spin) u with
Hilbert space H,.

@ An efficiently specifiable quantum state py on Hy = @,y Hu-

@ Edges e = (u, v) encode some kind of dependency relation in py,.

How to specify py?

@ Many possible generalizations of classical bifactor states.
@ They have applications in different contexts:

e Quantum many-body.
@ Quantum error correction.
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Bifactor state: P(V) = 2 [T ey #(V) [Ty vyee v (U : V).
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Quantum graphical models

Non-commutative generalization

Bifactor state: P(V) = Z [T,ey #(V) [Ty vyee v (U : V).

Quantum generalization: p, and v,., operators on H, and H, ® H,
respectively.

Problems:

@ Ambiguity in order of the terms.
@ Not necessarily positive.
Define the family of products: A+(" B = (Az B7 Az )"
e n=1:AxB=ABA: (measurement, QEC).
@ n=o0: A® B = exp(log A + log B) (Hamiltonian, many-body).
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Quantum graphical models

Non-commutative generalization

Bifactor state: P(V) = Z [T,ey #(V) [Ty vyee v (U : V).

Quantum generalization: p, and v,., operators on H, and H, ® H,
respectively.

Problems:

@ Ambiguity in order of the terms.
@ Not necessarily positive.
Define the family of products: A+(" B = (Az B7 Az )"
e n=1:AxB=ABA: (measurement, QEC).
@ n=o0: A® B = exp(log A + log B) (Hamiltonian, many-body).
@ Intermediate n: Trotter-Suzuki decomposition.
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Quantum graphical models

Quantum generalisations

In analogy with the classical case, define
@ Conditional state ,0/(47‘?3 = pg' *" pag.

o Mutual state p{'% = (p"pg") «™ pas.
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Quantum graphical models

Quantum conditional independence

Given three quantum systems A, B, and C and a joint state pagc, we
say that A and C are independent given Bif (A: C|B) =0
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Quantum graphical models

Quantum conditional independence

Given three quantum systems A, B, and C and a joint state pagc, we
say that A and C are independent given B if /(A : C|B) = 0 which
implies:

® pagc = pax" pgf)A #(7) p(C"|)B which suggests A — B — C.
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Quantum graphical models

Quantum conditional independence

Given three quantum systems A, B, and C and a joint state pagc, we
say that A and C are independent given B if /(A : C|B) = 0 which
implies:

® pagc = pax" pgf)A #(7) p(C"|)B which suggests A — B — C.

n) (N (n) P('?

Pag gc Which suggests A — B — C.

® pasc = pc A
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Quantum graphical models

Quantum conditional independence

Given three quantum systems A, B, and C and a joint state pagc, we
say that A and C are independent given B if /(A : C|B) = 0 which
implies:

® pagc = pax" pgf)A #(7) p(C"|)B which suggests A — B — C.

m pUL () p"M \which suggests A — B «— C.

® pasc = pc + PaB BIC

© pagc = pp " pi\n)B () p(C")B which suggests A «— B — C.
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Quantum graphical models

Quantum conditional independence

Given three quantum systems A, B, and C and a joint state pagc, we
say that A and C are independent given B if /(A : C|B) = 0 which
implies:

@ pagc = pa M pM 4 KM Wwhich suggests A — B — C.

BA™ " PciB
@ pasc = pc x" pﬂﬁa *(") pg’)c which suggests A < B « C.

® pasc = pp ") pi\n)B (M p(C")B which suggests A — B — C.
These conditions differ for different values of n and differ between each

other.
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Quantum graphical models

Quantum conditional independence

Given three quantum systems A, B, and C and a joint state pagc, we
say that A and C are independent given B if /(A : C|B) = 0 which
implies:

@ pagc = pa*" p(”) (M oM \which suggests A — B — C.

BIA c|B
@ pasc = pc x" pl(q‘)B (n) p‘(,aq)c which suggests A — B — C.

® pasc = pp ") piﬂ)B (1) p(C"‘)B which suggests A«— B — C.

These conditions differ for different values of n and differ between each

other.
@ pasc = (papspc) ™ (pfq gpg’)c) is a quantum bifactor network.

Santa Fe’'08 15/33
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Quantum graphical models

Quantum conditional independence

For n = oo, all conditions are equivalent and imply conditional
independence.
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Quantum graphical models

Quantum conditional independence

For n = oo, all conditions are equivalent and imply conditional
independence.

For n =1, the first two conditions are equivalent and imply conditional
independence.
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Quantum graphical models

Quantum conditional independence

For n = oo, all conditions are equivalent and imply conditional
independence.

Theorem
For n =1, the first two conditions are equivalent and imply conditional
independence.

N

Theorem (Quantum Hammersley-Clifford)
If (pv, G) is a positive quantum Markov network, then

ov= ) o—C:exp{—ﬁ > hc}-

Cee(G) Cee(G)

§
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tum belief propagation

The algorithm

Cut and paste from previous section.
Don't forget to search for [ and replace by (7).
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Quantum belief propagation

The algorithm

Cut and paste from previous section.
Don't forget to search for [ and replace by (7).

M. Hastings '07
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Quantum belief propagation
Convergence

Let G= (V, E) be a graph and let

= 3 (@)« (T] )

ueV (u,v)eE

be a bifactor state on G.
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Quantum belief propagation
Convergence

Let G= (V, E) be a graph and let

= 2(@ue) (1 )

ueV (u,v)eE

be a bifactor state on G.

If G is a tree and (G, pv) is a quantum Markov random field, then the
beliefs b, converge to the correct marginals p, = Try_y{pv} in a time
proportional to depth(G).

David Poulin (Caltech) Quantum Belief Propagation Santa Fe'08 19/33



Quantum belief propagation
Convergence

Let G= (V, E) be a graph and let

= 2(@ue) (1 )

ueV (u,v)eE

be a bifactor state on G.

If G is a tree and (G, pv) is a quantum Markov random field, then the
beliefs b, converge to the correct marginals p, = Try_,{py} in a time
proportional to depth(G).

If G is a tree and n = 1, then the beliefs b, converge to the correct
marginals p, = Try_y{pv} in a time proportional to depth(G).
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Examples
Outline

e Examples
@ Quantum turbo-codes

@ Many-body simulations
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Examples Quantum turbo-codes

Outline

0 Graphical models
9 Belief propagation
e Quantum graphical models

e Quantum belief propagation

e Examples
@ Quantum turbo-codes
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Examples Quantum turbo-codes

Turbo code performances on depolarization channel

Overhead =9
Memory =3

o Rate is fixed at §.

—350
— 100
—250
—500
—2000
——4000

Block error probability

0.08 0.09 0.1 0.11 0.12 0.13
Channel error probability
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Examples Quantum turbo-codes

Turbo code performances on depolarization channel

Overhead =9
Memory =3

o Rate is fixed at §.

10 3 -
z @ Error probability decreases as
e} .
g number of encoded qubits
s increases.
§ 107 —50
X — 100
E —250
m 10 ——500
—— 2000
- —— 4000
10° ; ; : ; ;
0.08 0.09 0.1 0.11 0.12 0.13

Channel error probability
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Examples Quantum turbo-codes

rmances on depolarization channel

Overhead =9
Memory =3

o Rate is fixed at §.

10 Kl .
z @ Error probability decreases as
o .
g number of encoded qubits
s increases.
10 1 H'H ]
5" — | 1 @ Error-free "phase transition" at
8 ——250 0.1
o 107 ——500 | s
— 2000
~ —— 4000
107 : : . . .
0.08 0.09 0.1 0.11 0.12 0.13

Channel error probability
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Examples Quantum turbo-codes

Turbo code performances on depolarization channel

Overhead =9
Memory =3

o Rate is fixed at §.

10 Kl .
z @ Error probability decreases as
o .
g number of encoded qubits
s increases.
(SR ] oy
5" — | 1 @ Error-free "phase transition" at
8 ——250 0.1
o 107 ——500 | s
i | @ With finite size, 10~* threshold

0.08 009 01 o1l 012 oi:  around e = 0.08.

Channel error probability
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Examples Quantum turbo-codes

Turbo code performances on depolarization channel

| Memayes e Rate is fixed at {.
10 ¢ 3 ™
z @ Error probability decreases as
o .
g number of encoded qubits
s increases.
[ ] oy
5" — | 1 @ Error-free "phase transition" at
8 ——250 0.1
o 107 ——500 | s
i | @ With finite size, 10~* threshold
107

0.08 009 01 o1l 012 oi:  around e = 0.08.

Channel error probability

Best performance to date at this rate. ]

Poulin, Tillich, and Ollivier'07.
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Examples Quantum turbo-codes

Code performances

Classical Rate Quantum Rate
1. rl
Shannon limit
095 I 695(_1;5125‘\*\\\\\ Stabilizer rate --------
“~Gilbert rate -
0.9 2184(MaI ‘15208(M~)\ > Los
0.85 - 1024(RM 3786(B) .
’ £25;( SS) 1023(BCH;' I
08 1" 4006(RM HE2U) ™ oss(iy
) ] “ . R786(B,4SC
0.75 128(CSS 255(BCH ! <05
2000(N; L 3786(B) . ~
07 - . n
128(CSS)T %74(‘}) R
0.65 |- 1024RM) 19014(8)". s
06 |- 4096IRM) 74(U$ 546(B) E786(B) "--.,_EV%,D)
055 - 23(Golay)1L [[29,1’11]]4- ?3786(B) . o
0.5 b ] 0
0.001 0.01

MacKay, Mitchison, McFadden, IEEE’04.
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Examples Many-body simulations

Outline

0 Graphical models
9 Belief propagation
e Quantum graphical models

e Quantum belief propagation

e Examples

@ Many-body simulations
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H = 3~; hi + 3, Jj;.
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H = 3~; hi + 3, Jj;.
lts Gibbs distribution is (u(/) = e~ and v(i,j) = e=#J)
1 e BH(i la;...)

p(i1)i27"') - Z

_ %u(h Y lir, o))l i3)ua(is) -

Santa Fe’'08 25/33
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H = 3 hj +>_;

lts Gibbs distribution is (u(/) = e~ and v(i,j) = e=#J)

) — 1 e /BH(I17127)

iy, b, ...
p(iy, b2, >

= Sl (), )

So the partition function can be evaluated step by step:
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H = 3 _; hj + >y Jj

lts Gibbs distribution is (u(i) = e~ ?" and v (i, j) = e~ %)

1 o
— _ _BH(I17127“')
) €

= Zulin)v(iv, )u(iz)v iz, i3)u(ia) - -
So the partition function can be evaluated step by step:

my_z(k2) § p(iv)v(iy, i)

plit, o, ...
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H = 3 _; hj + >y Jj

lts Gibbs distribution is (u(i) = e~ ?" and v (i, j) = e~ %)

1 o
— _ _BH(I17127“')
) €

= Zulin)v(iv, )u(iz)v iz, i3)u(ia) - -
So the partition function can be evaluated step by step:
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H = 3 _; hj + >y Jj

lts Gibbs distribution is (u(i) = e~ ?" and v (i, j) = e~ %)

1 o
— _ _BH(I17127“')
) €

= Zulin)v(iv, )u(iz)v iz, i3)u(ia) - -
So the partition function can be evaluated step by step:

my_z(k2) § p(iv)v(iy, i)
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Examples Many-body simulations

One dimensional classical system

Consider the 1d classical system with hamiltonian H = 3 _; hj + >y Jj

lts Gibbs distribution is (u(i) = e~ ?" and v (i, j) = e~ %)

1 o
— _ _BH(I17127“')
) €

= Zulin)v(iv, )u(iz)v iz, i3)u(ia) - -
So the partition function can be evaluated step by step:

my_z(k2) § p(iv)v(iy, i)

plit, o, ...

mo_3(i3) Zm/ﬁ@ i) (i) v (i, i)

ma_.4(ia) Zmlgﬂlg i3)pu(iz)v(ia, ig)

Z= E miN,1—>iNM(/N)
in
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Examples Many-body simulations

One dimensional quantum system

Consider the 1d quantum system with hamiltonian H = 3=, hj + 3, Jj;.
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Examples Many-body simulations

One dimensional quantum system

Consider the 1d quantum system with hamiltonian H = >~ hi +3_;

lts Gibbs distribution is (1; = e=# and v;,; = e=#)

1 sy 1
pV:?e :2ILLI1®Vl1I2®)uI2®V12I3®:u/I3
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Examples Many-body simulations

One dimensional quantum system

Consider the 1d quantum system with hamiltonian H = 3=, hj + 3, Jj;.
lts Gibbs distribution is (u; = e~ and v;; = e=)

1 sy 1
pV:?e :2ILLI1®Vl1I2®)uI2®V12I3®:u/I3

Bottleneck for computing Z:

Tra{ua ©vap © up © vp.c © pct # Tralpa © vapt © up © vp.c © pic
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Examples Many-body simulations

One dimensional quantum system

Consider the 1d quantum system with hamiltonian H = 3=, hj + 3, Jj;.
lts Gibbs distribution is (u; = e~ and v;; = e=)

1 sy 1
pV:?e :2ILLI1®Vl1I2®)uI2®V12I3®:u/I3

Bottleneck for computing Z:

Tra{ua ©vap © up © vp.c © pct # Tralpa © vapt © up © vp.c © pic

But it is equal when /(A : C|B) = 0.
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Examples Many-body simulations

Effective thermal hamiltonian

i 1
H= z hi + Jijit1 r=7 exp{—GH}

1=—00

gololelelololololololoR
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Examples Many-body simulations

Effective thermal hamiltonian

p= % exp{—SH}

Zolololololo ololololoR
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Examples Many-body simulations

Effective thermal hamiltonian

P =Tro._1{p} p= % exp{—(H}

Zolololololo ololololoR
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Examples Many-body simulations

Effective thermal hamiltonian

1
pr=Tro.—{p} ¢ = exp{—fHo}

m@a@@®qb@@®®m

Effective Thermal Hamiltonian = Y7 hi + J; i1
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Examples Many-body simulations

Effective thermal hamiltonian

1
pr=Tro.—{p} ¢ = exp{—fHo}

m@a@@®qb@@®®m

Effective Thermal Hamiltonian = Y7 hi + J; i1

\ AN

10 20 30 40 50 60 70 80 90 100
J
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Examples Many-body simulations

Effective thermal hamiltonian

1
pr=Tro.—{p} ¢ = exp{—fHo}

m@a@@®qb@@®®m

Effective Thermal Hamiltonian = Y72, hi + J; i1 +V4

\ AN

10 20 30 40 50 60 70 80 90 100
J
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Examples Many-body simulations

Effective thermal hamiltonian

1
pr=Tro.—{p} ¢ = exp{—fHo}

m@a@@®qbo@®®m

Effective Thermal Hamiltonian = "7, hj + J; i1 + V4 + Vo

\ AN

10 20 30 40 50 60 70 80 90 100
J
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Examples Many-body simulations

Effective thermal hamiltonian

1
pr=Tro.—{p} ¢ = exp{—fHo}

m@a@@®qboo®®m

Effective Thermal Hamiltonian = "2, hi + J; i1 + V4 +Vo+ V3

\ AN

10 20 30 40 50 60 70 80 90 100
J
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Examples Many-body simulations

Effective thermal hamiltonian

1
pr=Tro.—{p} ¢ = exp{—fHo}

m@a@@®qbooo®m

Effective Thermal Hamiltonian = "%, hj + J; i1 + Vi +Vo+Va+ Vg ...

\ AN

10 20 30 40 50 60 70 80 90 100
J
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Examples Many-body simulations

Effective thermal hamiltonian

1
pr=Tro.—{p} ¢ = exp{—fHo}

m@a@@®qbooo®m

Effective Thermal Hamiltonian = "%, hj + J; i1 + Vi +Vo+Va+ Vg ...

10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6
J
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Examples Many-body simulations

e dimensional quantum system
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Examples Many-body simulations

One dimensional quantum system

0 00000O0COCGOCOS
W—J
O1-4

o4 = @ Bhi+hothg+hy+Jra+das+Jas)
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Examples Many-body simulations

One dimensional quantum system

00000 OGOGOOOOOO
—

/
2—4

o4 = @ Bhi+hothg+hy+Jra+das+Jas)

1
8

/ / /
0p_4=Tn{o1_4} Moy =—-logoy 4
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Examples Many-body simulations

One dimensional quantum system

o000 O0OOGOOOOEOO
~—
025

o4 = @ Bhi+hothg+hy+Jra+das+Jas)

’
0p_g=Tr{o1 4} hp 4= 3

5= @ Pho_y+hs+Jss)

logay_4

Oo_
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Examples Many-body simulations

One dimensional quantum system

00000 OGOGOOOOOO
—

l
3-5

4= @ B(hi+hatha+hytdia+Jps+Jas)

o1_
/ _ T hl _ 1 | /
054 = Tn{o1_a} hp 4= 3 0902 4

/
Oo_5 = e_ﬂ(h2_4+h5+‘/45)
/ _ T h/ _ 1 I /
035 = T{oz 5} h3_5=——logog_ s

g
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Examples Many-body simulations

One dimensional quantum system

0 00000O0COGOCS
w_/

03-6
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o1_
/ _ T hl _ 1 | /
054 = Tn{o1_a} hp 4= 3 0902 4

/
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/ _ T h/ _ 1 I /
035 = T{oz 5} h3_5=——logog_ s
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_ /
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Examples Many-body simulations

One dimensional quantum system

00000000 O0CO
| —

ON-3,N-2,N—1,N

4= @ B(hi+hatha+hytdia+Jps+Jas)

o1_
/ _ T hl _ 1 | /
054 = Tn{o1_a} hp 4= 3 0902 4

/
Oo_5 = e_ﬂ(h2_4+h5+‘/45)
/ _ T h/ _ 1 I /
035 = T{oz 5} h3_5=——logog_ s

g

_ /
03 =€ B(hs_g+he+Jse)

Z = Tr{on_3N—2,N—1,N}
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Examples Many-body simulations

Critical 1d Ising model

10
« 8 T
o
6
—~ Replica
K 4r TEBD 1
l Sliding window
i 2 ! I ]
0 Y
0 2 4 6 8 10

B
Bilgin and Poulin "07.
@ Replica: Trotter decomposition N, = 10 (bifactor x(10).
@ TEBD: Time-evolving block decimation (DMRG x = 150).
@ Sliding window ¢ = 6 (bifactor ©).
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Examples Many-body simulations

1D anti-ferromagnetic Heisenberg model

0.4 T — —
0.35] » X\
\ / \
0.3F \\ ol \ I
= /, \
s /f
g 0.25¢ \\ e Xl
L /
% 0.2 03%%6 047 048 049 o5
2
» 0157
~
0.11 N
0.05 Bethe Ansatz ||
— Sliding window
0 . . ;
0 0.5 1 15 )
Temperature

@ Bethe Ansatz: exact (A.Klimper and D. C. Johnston, PRL00).
@ Sliding window ¢ = 9 (bifactor ©).
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Examples Many-body simulations

Phase diagram

Ising spin glass on Cayley tree

Catcal Asymgots (= 10)

Transverse field By

0.2 0.4 06 08 1
Temperature

12 14
1.13

Laumann, Scardicchio, and Sondhi ‘07, Bilgin and Poulin.
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Examples Many-body simulations

2D anti-ferromagnetic Heisenberg model

@ Quantum Monte Calrlo: M.S. Makivi¢ and H.-Q. Ding PRB’91.
@ 10th-order J/T expansion.
@ Quantum Belief propagation, window size 7.
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@ Belief propagation operating on graphical models is a powerful,
highly parrallelizable, heuristic for all sorts of inference problems.
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@ Many of these properties carry over to the quantum realm:
o Half Hammersley-Clifford Theorem (Markov = Gibbs).
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Summary

@ Belief propagation operating on graphical models is a powerful,
highly parrallelizable, heuristic for all sorts of inference problems.
@ Many of these properties carry over to the quantum realm:

o Half Hammersley-CIifford Theorem (Markov = Gibbs).

b)
Blhctoz networks Markov networks Markov networks

ifactor networks

Cliques > 2
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codes.

David Poulin (Caltech) Quantum Belief Propagation Santa Fe’'08 33/33



Summary

@ Belief propagation operating on graphical models is a powerful,
highly parrallelizable, heuristic for all sorts of inference problems.
@ Many of these properties carry over to the quantum realm:

o Half Hammersley-CIifford Theorem (Markov = Gibbs).

b)
Blflctt)l networks Markov networks Markov networks

ifactor networks

Cliques > 2

e Good heuristic for iterative decoding of sparse and quantum turbo
codes.

e Good heuristic for many-body systems on graphs with no small
loops.

David Poulin (Caltech) Quantum Belief Propagation Santa Fe’'08 33/33



Summary

@ Belief propagation operating on graphical models is a powerful,
highly parrallelizable, heuristic for all sorts of inference problems.
@ Many of these properties carry over to the quantum realm:

o Half Hammersley-CIifford Theorem (Markov = Gibbs).

b)
Blflctt)l networks Markov networks Markov networks

ifactor networks

Cliques > 2

e Good heuristic for iterative decoding of sparse and quantum turbo
codes.

e Good heuristic for many-body systems on graphs with no small
loops.

See poster by Ersen Bilgin for more details ]
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